1,379 research outputs found

    Visual function and long-term chloroquine treatment

    Get PDF
    Ophthalmic examinations and selected tests of visual function were perfonned on 64 patients with rheumatoid arthritis who had received daily doses of 200 mg chloroquine sulphate for periods ranging from 3 to 11 months. Visual fields were determined by Humphrey automated perimetry and Amsler grids and a further battery of four tests of macular function (visual evoked potentials, critical flicker fusion threshold, Cambridge contrast sensitivity and the macular dazzle test) were administered. No case of retinal pigmentary abnormalities plus visual loss was found, but 2 patients were advised to cease chloroquine therapy on the basis of funduscopic findings. A small group of patients with relatively poor scores on one or more tests had normal visual fields and ophthalmic findings. There were no significant partial correlations between test results and the cumulative dose of chloroquine. These results support the opinion that currently recommended doses of chloroquine pose a minimal risk of retinal toxicity

    Knoflook remt App

    Get PDF
    De Animal Sciences Group van Wageningen UR heeft in opdracht van biologische varkenshouders onderzocht of het mogelijk is om in plaats van antibiotica, knoflook te gebruiken voor de bestrijding van longontsteking door de bacterie Actinobacillus pleuropneumoniae (App). Uit de resultaten blijkt dat Allyl Methyl Sulfi de (AMS), een omzettingsproduct van knoflook, de groei van App remt

    Generalized Conformal Quantum Mechanics of D0-brane

    Get PDF
    We study the generalized conformal quantum mechanics of the probe D0-brane in the near horizon background of the bound state of source D0-branes. We elaborate on the relationship of such model to the M theory in the light cone frame.Comment: 14 pages, RevTeX, revised version with added references to appear in Phys. Rev.

    A New Technology for Stabilization of Biomolecules in Tissues for Combined Histological and Molecular Analyses

    Get PDF
    For accurate diagnosis, prediction of outcome, and selection of appropriate therapies, the molecular characterization of human diseases requires analysis of a broad spectrum of altered biomolecules, in addition to morphological features, in affected tissues such as tumors. In a high-throughput screening approach, we have developed the PAXgene Tissue System as a novel tissue stabilization technology. Comprehensive characterization of this technology in stabilized and paraffin-embedded human tissues and comparison with snap-frozen tissues revealed excellent preservation of morphology and antigenicity, as well as outstanding integrity of nucleic acids (genomic DNA, miRNA, and mRNA) and phosphoproteins. Importantly, PAXgene-fixed, paraffin-embedded tissues provided RNA quantity and quality not only significantly better than that obtained with neutral buffered formalin, but also similar to that from snap-frozen tissue, which currently represents the gold standard for molecular analyses. The PAXgene tissue stabilization system thus opens new opportunities in a variety of molecular diagnostic and research applications in which the collection of snap-frozen tissue is not feasible for medical, logistic, or ethical reasons. Furthermore, this technology allows performing histopathological analyses together with molecular studies in a single sample, which markedly facilitates direct correlation of morphological disease phenotypes with alterations of nucleic acids and other biomolecules

    Relativistic Quark Spin Coupling Effects in the Correlations Between Nucleon Electroweak Properties

    Get PDF
    We investigate the effect of different relativistic spin couplings of constituent quarks on nucleon electroweak properties. Within each quark spin coupling scheme the correlations between static electroweak observables are found to be independent of the particular shape of the momentum part of the nucleon light-front wave function. The neutron charge form factor is very sensitive to different choices of spin coupling schemes once the magnetic moment is fitted to the experimental value. However, it is found rather insensitive to the details of the momentum part of the three-quark wave function model.Comment: 23 pages, 13 figures, requires axodraw.sty 1 figure corrected, 1 refs. added, some changes in tex

    Astrophysical Reaction Rates for 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be From a Direct Model

    Full text link
    The reactions 10^{10}B(p,α\alpha)7^{7}Be and 11^{11}B(p,α\alpha)8^{8}Be are studied at thermonuclear energies using DWBA calculations. For both reactions, transitions to the ground states and first excited states are investigated. In the case of 10^{10}B(p,α\alpha)7^{7}Be, a resonance at ERes=10E_{Res}=10 keV can be consistently described in the potential model, thereby allowing the extension of the astrophysical SS-factor data to very low energies. Strong interference with a resonance at about ERes=550E_{Res}=550 keV require a Breit-Wigner description of that resonance and the introduction of an interference term for the reaction 10^{10}B(p,α1\alpha_1)7^{7}Be^*. Two isospin T=1T=1 resonances (at ERes1=149E_{Res1}=149 keV and ERes2=619E_{Res2}=619 keV) observed in the 11^{11}B+p reactions necessitate Breit-Wigner resonance and interference terms to fit the data of the 11^{11}B(p,α\alpha)8^{8}Be reaction. SS-factors and thermonuclear reaction rates are given for each reaction. The present calculation is the first consistent parametrization for the transition to the ground states and first excited states at low energies.Comment: 27 pages, 5 Postscript figures, uses RevTex and aps.sty; preprint also available at http://quasar.physik.unibas.ch/ Phys. Rev. C, in pres

    Semidefinite Characterization and Computation of Real Radical Ideals

    Full text link
    For an ideal IR[x]I\subseteq\mathbb{R}[x] given by a set of generators, a new semidefinite characterization of its real radical I(VR(I))I(V_\mathbb{R}(I)) is presented, provided it is zero-dimensional (even if II is not). Moreover we propose an algorithm using numerical linear algebra and semidefinite optimization techniques, to compute all (finitely many) points of the real variety VR(I)V_\mathbb{R}(I) as well as a set of generators of the real radical ideal. The latter is obtained in the form of a border or Gr\"obner basis. The algorithm is based on moment relaxations and, in contrast to other existing methods, it exploits the real algebraic nature of the problem right from the beginning and avoids the computation of complex components.Comment: 41 page

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Bose-Einstein Correlations of Neutral and Charged Pions in Hadronic Z Decays

    Get PDF
    Bose-Einstein correlations of both neutral and like-sign charged pion pairs are measured in a sample of 2 million hadronic Z decays collected with the L3 detector at LEP. The analysis is performed in the four-momentum difference range 300 MeV < Q < 2 GeV. The radius of the neutral pion source is found to be smaller than that of charged pions. This result is in qualitative agreement with the string fragmentation model
    corecore